For the function f(x) = x2 – 2x + 1. We have Rolles point at x = 1. The coordinate axes are then rotated by 45 degrees in anticlockwise sense. What is the position of new Rolles point with respect to the transformed coordinate axes?

For the function f(x) = x2 – 2x + 1. We have Rolles point at x = 1. The coordinate axes are then rotated by 45 degrees in anticlockwise sense. What is the position of new Rolles point with respect to the transformed coordinate axes? Correct Answer 3⁄2

n:The coordinate axes are rotated by 45 degree then the problem transforms into that of Lagrange mean value theorem where the point in some interval has the slope of tan(45). Hence differentiating the function and equating to tan(45). We have f'(x) = tan(45) = 2x – 2 2x – 2 = 1 x = 3⁄2.

Related Questions

How far is point 'R' from Point 'T'? Statement (I): Point 'R' is 5 metres to the north of point 'M'. Point 'U' is 4 metres to the east of point 'R'. Point 'T' is to the west of point 'R' such that points 'U' 'R' and 'T' form a straight line of  metres. Statement (II): Point 'Z' is metres to the south of point 'T'. Point 'U' is  metres to the east of point 'T'. Point 'M' is  metres to the east of point 'Z'. Point 'R' is  metres to the north of point 'M'. Point 'R' lies on the line formed by joining points 'T' and 'U'.