The following moves are performed on g(x). (i) Pick (x0, y0) on g(x) and travel toward the left/right to reach the y = x line. Now travel above/below to reach g(x). Call this point on g(x) as (x1, y1) (ii) Let the new position of (x0, y0)be (x0, y1) This is performed for all points on g(x) and a new function is got. Again these steps may be repeated on new function and another function is obtained. It is observed that, of all the functions got, at a certain point (i.e. after finite number of moves) the nth derivatives of the intermediate function are constant, and the curve passes through the origin. Then which of the following functions could be g(x)

The following moves are performed on g(x). (i) Pick (x0, y0) on g(x) and travel toward the left/right to reach the y = x line. Now travel above/below to reach g(x). Call this point on g(x) as (x1, y1) (ii) Let the new position of (x0, y0)be (x0, y1) This is performed for all points on g(x) and a new function is got. Again these steps may be repeated on new function and another function is obtained. It is observed that, of all the functions got, at a certain point (i.e. after finite number of moves) the nth derivatives of the intermediate function are constant, and the curve passes through the origin. Then which of the following functions could be g(x) Correct Answer x7 y 8 + 4y = constant

Related Questions

How far is point 'R' from Point 'T'? Statement (I): Point 'R' is 5 metres to the north of point 'M'. Point 'U' is 4 metres to the east of point 'R'. Point 'T' is to the west of point 'R' such that points 'U' 'R' and 'T' form a straight line of  metres. Statement (II): Point 'Z' is metres to the south of point 'T'. Point 'U' is  metres to the east of point 'T'. Point 'M' is  metres to the east of point 'Z'. Point 'R' is  metres to the north of point 'M'. Point 'R' lies on the line formed by joining points 'T' and 'U'.