Consider the Quick sort algorithm in which the partitioning procedure splits elements into two sub-arrays and each sub-array contains at least one-fourth of the elements. Let T(n) be the number of comparisons required to sort array of n elements. Then T(n)<=?

Consider the Quick sort algorithm in which the partitioning procedure splits elements into two sub-arrays and each sub-array contains at least one-fourth of the elements. Let T(n) be the number of comparisons required to sort array of n elements. Then T(n)<=? Correct Answer T(n) <= T(n/4) + T(3n/4) + cn

If there are n/4 elements in one sub-array then T(n/4) comparisons are needed for this sub-array. And T(3n/4) comparison are required for the rest 4n/5 elements, and cn is time required for finding the pivot. If there are more than n/4 elements in one sub-array then other sub-array will have less than 3n/4 elements and time complexity will be less than T(n/4) + T(3n/4) + cn.

Related Questions

A teacher asked the class to subtract 5 from 75.70% of the class said: 25. Their work was shown as: \(\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 7&5 \end{array}}\\ {\underline {\begin{array}{*{20}{c}}\ { - 5} \ \ \ &{} \end{array}} }\\ {\underline {\begin{array}{*{20}{c}} 2&5 \end{array}} } \end{array}\) Which of the following describes the most appropriate remedial action that the teacher should take to clarify this misconception?