Find the vector product (a X b) of the two given vectors: a = 2i + 3j + 4k, b = 3i + 5j. Here, i, j & k are unit vectors along three mutually perpendicular axes.

Find the vector product (a X b) of the two given vectors: a = 2i + 3j + 4k, b = 3i + 5j. Here, i, j & k are unit vectors along three mutually perpendicular axes. Correct Answer -20i + 12j + k

The cross product of a & b = i(0-20) – j(0 – 12) + k(10 – 9) = -20i + 12j + k. Note that this is not the same as b X a.

Related Questions

Consider a system described by ẋ = Ax + Bu y = Cx + Du The system is completely output controllable if and only if Where: x = State vector (n-vector) u = Control vector (r-vector) y = Output vector (m-vector) A = n × n matrix B = n × r matrix C = m × n matrix D = m × r matrix