Which of the following problems are decidable? I. Checking whether two regular languages are equivalent languages II. Checking whether two non-deterministic finite automata accept the same language III. Checking whether two context free grammars generate equivalent languages  IV. Checking whether a language of a context free grammar is non-empty

Which of the following problems are decidable? I. Checking whether two regular languages are equivalent languages II. Checking whether two non-deterministic finite automata accept the same language III. Checking whether two context free grammars generate equivalent languages  IV. Checking whether a language of a context free grammar is non-empty Correct Answer I, II and IV only

Answer - Option (1): I, II, and IV only

Statement 1: True
Checking whether two regular languages are equivalent languages is Decidable.

Statement 2: True
Checking whether two non-deterministic finite automata accept the same language is Decidable.

Statement 3: False
Checking whether two context-free grammars generate equivalent languages is UnDecidable.


Key Points

The equality problem is Undecidable for all languages except in the case of finite automata (i.e. for regular languages) & Deterministic context-free language. 

Statement 4: True
Checking whether a language of context-free grammar is non-empty is Decidable.

All the statements can be verified from the below table.

 

Additional Information

Grammar

W∈L(G)

L(G)=ϕ

L(G)=∑ϕ

L(G1)⊆L(G2)

L(G1)=L(G2)

L(G1)∩L(G2)=ϕ

L(G) is regular?

L(G) is finite ?

Regular Grammar

D

D

D

D

D

D

D

D

Det. Context Free

D

D

D

UD

D

UD

D

D

Context Free

D

D

UD

UD

UD

UD

UD

D

Context Sensitive

D

UD

UD

UD

UD

UD

UD

UD

Recursive

D

UD

UD

UD

UD

UD

UD

UD

Recursively Enumerable

UD

UD

UD

UD

UD

UD

UD

UD

Related Questions