If a matrix A is such that 3A3 + 2A2 + 5A + I = 0 then what is A-1 equal to?
If a matrix A is such that 3A3 + 2A2 + 5A + I = 0 then what is A-1 equal to? Correct Answer -(3A<sup>2</sup> + 2A + 5I)
Concept:
Let A be the square matrix.
A-1A = I and A-1I = A-1
Calculations:
Given, a matrix A is such that 3A3 + 2A2 + 5A + I = 0
Consider, 3A3 + 2A2 + 5A + I = 0
Pre - Multiply the above polynomial by A-1.
⇒A-1(3A3 + 2A2 + 5A + I) = A-1(0)
⇒3A-1A3 + 2A-1A2 + 5A-1A + A-1I = 0
⇒3A-1AA2 + 2A-1AA + 5A-1A + A-1I = 0
We know that A-1A = I and A-1I = A-1
⇒3IA2 + 2IA + 5I + A-1 = 0
⇒3A2 + 2A + 5I + A-1 = 0
⇒3A2 + 2A + 5I + A-1 = 0
⇒A-1 = - (3A2 + 2A + 5I)
Hint
To find the value of 3A3 + 2A2 + 5A + I = 0, Pre - Multiply the above polynomial by A-1.
মোঃ আরিফুল ইসলাম
Feb 20, 2025