What is the value of C(51, 21) - C(51, 22) + C(51, 23) - C(51, 24) + C(51, 25) - C(51, 26) + C(51, 27) - C(51, 28) + C(51, 29) - C(51, 30) ?
What is the value of C(51, 21) - C(51, 22) + C(51, 23) - C(51, 24) + C(51, 25) - C(51, 26) + C(51, 27) - C(51, 28) + C(51, 29) - C(51, 30) ? Correct Answer C(51, 51) - C(51, 0)
Concept:
Formulae
- nCr = nCn-1
Calculation:
Given,
C(51, 21) - C(51, 22) + C(51, 23) - C(51, 24) + C(51, 25) - C(51, 26) + C(51, 27) - C(51, 28) + C(51, 29) - C(51, 30)
We know that nCr = nCn-r
So we can write,
C(51, 21) = C(51, 30)
C(51, 22) = C(51, 29)
C(51, 23) = C(51, 28)
C(51, 24) = C(51, 27)
C(51, 25) = C(51, 26)
So the above expression can be written as
C(51, 30) - C(51, 29) + C(51, 28) - C(51, 27) + C(51, 26) - C(51, 26) + C(51, 27) - C(51, 28) + C(51, 29) - C(51, 30)
= C(51, 30) - C(51, 30) + C(51, 29) - C(51, 29) + C(51, 28) - C(51, 28) + C(51, 27) - C(51, 27) + C(51, 26) - C(51, 26)
= 0
Checking option C:
C(51, 51) - C(51, 0)
Using nCr = nCn-1 we can write C(51, 51) = C(51, 0),
C(51, 0) - C(51, 0) = 0
∴ The value of the expression is C(51, 51) - C(51, 0).