The height of a tree is defined as the number of edges on the longest path in the tree. The function shown in the pseudocode below is invoked as height(root) to compute the height of a binary tree rooted at the tree pointer root. int height (treeptr n) { if (n == NULL) return -1; if (n → left == NULL) if (n → right == NULL) return 0; else return ; \(\boxed{B1}\); // Box 1 else { h1 = height (n → left); if (n → right == NULL) return (1+h1); else { h2 = height (n → right); return ; \(\boxed{B2}\) // Box 2 } } } The appropriate expressions for the two boxes B1 and B2 are
The height of a tree is defined as the number of edges on the longest path in the tree. The function shown in the pseudocode below is invoked as height(root) to compute the height of a binary tree rooted at the tree pointer root. int height (treeptr n) { if (n == NULL) return -1; if (n → left == NULL) if (n → right == NULL) return 0; else return ; \(\boxed{B1}\); // Box 1 else { h1 = height (n → left); if (n → right == NULL) return (1+h1); else { h2 = height (n → right); return ; \(\boxed{B2}\) // Box 2 } } } The appropriate expressions for the two boxes B1 and B2 are Correct Answer <p>B1: (1+height(n → right))</p> <p>B2: (1+max(h1, h2))</p>
The correct answer is option 1
EXPLANATION:
The box B1 gets executed when left subtree of n is NULL and right subtree is not NULL. So, height of n will be height of right subtree plus one.
The box B2 gets executed when both left and right subtrees of n are not NULL. So, height of n will be max of heights of left and right subtrees of n plus 1.
So, the correct answer is
B1: (1+height(n → right))
B2: (1+max(h1, h2))
EXAMPLE:
Find the height of this tree using option 1 in the program
int height (treeptr n)
{ if (n == NULL) return -1;
if (n → left == NULL)
if (n → right == NULL) return 0;
else return (1+height(n → right)) ; // Box 1
else { h1 = height (n → left);
if (n → right == NULL) return (1+h1);
else { h2 = height (n → right);
return (1+max(h1, h2)) ; // Box 2
}
}
}
[ alt="F1 Shubham.B 09-07-21 Savita D1" src="//storage.googleapis.com/tb-img/production/21/07/F1_Shubham.B_09-07-21_Savita_D1.png" style="width: 597px; height: 271px;">
So, the height of the above tree is 3