The remainder obtained when 8x4 + 14x3 – 2x2 + 7x – 8 is divided by 4x2 + 3x – 2 is: 

The remainder obtained when 8x4 + 14x3 – 2x2 + 7x – 8 is divided by 4x2 + 3x – 2 is:  Correct Answer 14x – 10

Given:

Divivdend = 8x4 + 14x3 – 2x2 + 7x – 8, Divisor = 4x2 + 3x – 2

Concept Used: 

Deducing given equation in multiple of divisor, we can easily determine remainder

Calculation:

On deducing given equation

⇒ 8x4 + 14x3 – 2x2 + 7x – 8

⇒ 8x4 + 6x3 - 4x2 + 8x3 + 2x2 + 7x – 8

⇒ (4x2 + 3x – 2) × 2x2 + 8x3 + 2x2 + 7x – 8

⇒ + - 4x2 + 11x - 8

⇒ + +  + 14x - 10

∴ Required remainder = 14x - 10          

Related Questions