Consider the following context-free grammar over the alphabet ∑ = {a, b, c} with S as the start symbol: S → abScT | abcT T → bT | b Which one of the following represents the language generated by the above grammar?
Consider the following context-free grammar over the alphabet ∑ = {a, b, c} with S as the start symbol: S → abScT | abcT T → bT | b Which one of the following represents the language generated by the above grammar? Correct Answer {(𝑎𝑏)<sup>𝑛</sup> 𝑐𝑏<sup>𝑚</sup><sup>1</sup> 𝑐𝑏<sup>𝑚</sup><sup>2 </sup>… 𝑐𝑏<sup>𝑚</sup><sup>𝑛 </sup>|𝑛, 𝑚<sub>1</sub>, 𝑚<sub>2 </sub>… , 𝑚<sub>𝑛</sub> ≥ 1}
String Derivation:
S → abScT
→ ababScTcT (∵ S → abScT)
→ abababcTcTcT (∵ S → abcT)
→ abababcbTcTcT (∵ T → bT)
→ abababcbbTcTcT (∵ T → bT)
→ abababcbbbTcTcT (∵ T → bT)
→ abababcbbbbcTcT (∵ T → b)
→ abababcbbbbcbcT (∵ T → b)
→ abababcbbbbcbcbT (∵ T → bT)
→ abababcbbbbcbcbb (∵ T → b)
abababcbbbbcbcbb = (ab)3cb4cbcb2
From this string, it is clear that all the option 1),3) and 4) are not generated by given grammar.
Only option 2 matches.