The angle of elevation of an aeroplane from a point on the ground is 60°. After flying for 30 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a height of 4500 m, then what is the speed (in m/s) of aeroplane?
The angle of elevation of an aeroplane from a point on the ground is 60°. After flying for 30 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a height of 4500 m, then what is the speed (in m/s) of aeroplane? Correct Answer 100√3
[ alt="SSC CHSL 24 March 2018 Shift3 Komal.docx hrev.docx 67" src="//storage.googleapis.com/tb-img/production/18/12/SSC_CHSL_24_March_2018_Shift3_Komal.docx_hrev.docx_67.PNG">
From the figure,
tan 60° = 4500/x
⇒ x = 4500/√3
And tan 30° = 4500/(x + y)
⇒ x + y = 4500√3
⇒ y = 4500√3 - 4500/√3
⇒ y = (13500 - 4500)/√3 = 9000/√3 = 3000√3
∴ Speed = 3000√3/30 = 100√3 mtr/sec
মোঃ আরিফুল ইসলাম
Feb 20, 2025