If 3sin θ + 5cos θ = 4, then what is the value of (3cos θ – 5sin θ)2?

If 3sin θ + 5cos θ = 4, then what is the value of (3cos θ – 5sin θ)2? Correct Answer 18

Given, (3sin θ + 5cos θ) = 4

Squaring both sides,

⇒ (3sin θ + 5cos θ)2 = 42

⇒ 9sin2 θ + 25cos2 θ + 30sin θ cos θ = 16

⇒ 30sin θ cos θ = 16 – 9sin2 θ – 25cos2 θ      ----(1)

Now,

(3cos θ – 5sin θ)2

= 9cos2 θ + 25sin2 θ – 30sin θ cos θ

= 9cos2 θ + 25sin2 θ – 16 + 9sin2 θ + 25cos2 θ

= 34(sin2 θ + cos2 θ) – 16

= 34 – 16

= 18

Related Questions

Calculate the emf when the flux is given by 3sin t + 5cos t
If sinθ + cosθ = √5sin(90 - θ), find the value of cotθ
What is the value of 5sin260° + 7sin245°+ 8cos245°?
If A = 60°, then what is the value of (4cos3 A - 3cos A)?
If θ be an acute angle and 7sin2θ + 3cos2θ = 4, then the value of tanθ is?
If 7sin2θ + 3cos2θ = 4, (0° ≤ θ ≤ 90°), then the value of θ is?