If the volume and surface area of a sphere are numerically the same. Find its diameter.

5 views

3 Answers

Volume of the sphere = \(\Large \frac{4}{3} \pi r^{3}\ cm^{3} \)

Surface area of sphere = \(\Large 4 \pi r^{2}\ cm^{2}\)

The volume of the sphere and the surface area of the sphere are numerically equal (given), 

\(\Large \frac{4}{3} \pi r^{3}\ cm^{3} \) = \(\Large 4 \pi r^{2}\ cm^{2}\)

r = 3. 

Hence, diameter = 2r = 6cm. 

5 views

ATQ,
Volume of sphere = SA of sphere
      4/3 πr^3 = 4πr^2
      => r = 3

D = 2r
D = 2x3
D = 6 units

5 views

4/3πr³=4πr²
4/3r=4
r=3
therefore, diameter=3×2=6

5 views

Related Questions