\( \lim _{n \rightarrow \infty}\left(\frac{1}{n^{3}+1}+\frac{4}{n^{3}+1}+\frac{9}{n^{3}+1}+\ldots .+\frac{n^{2}}{n^{3}+1}\right) \) is equal to (A) 1 (B) \( 2 / 3 \) (C) \( 1 / 3 \) (D) 0
\( \lim _{n \rightarrow \infty}\left(\frac{1}{n^{3}+1}+\frac{4}{n^{3}+1}+\frac{9}{n^{3}+1}+\ldots .+\frac{n^{2}}{n^{3}+1}\right) \) is equal to (A) 1 (B) \( 2 / 3 \) (C) \( 1 / 3 \) (D) 0
5 views
2 Answers
n(n+1)(2n+1)/6(n3+1)
(2n2 + n)/(6n2-6n+6)
(2+1/n)/(6-6/n+6/n2)
n=infinity
==2/6=1/3
5 views
Answered