If `A` is a skew symmetric matrix, then `B=(I-A)(I+A)^(-1)` is (where `I` is an identity matrix of same order as of `A`)
If `A` is a skew symmetric matrix, then `B=(I-A)(I+A)^(-1)` is (where `I` is an identity matrix of same order as of `A`)
A. idempotent matrix
B. symmetric matrix
C. orthogonal matrix
D. none of these
6 views
1 Answers
Correct Answer - C
`(c )` `B=(I-A)(I+A)^(-1)`
`impliesB^(T)=(I+A^(T))^(-1)(I-A^(T))`
`=(I-A)^(-1)(I+A)`
`impliesB B^(T)=(I-A)(I+A)^(-1)(I-A)^(-1)(I+A)`
`=(I-A)(I-A)^(-1)(I+A)^(-1)(I+A)`
`=I`
(As `(I-A).(I+A)=(I+A)(I-A)`)
6 views
Answered