Let `x,y,z in R^(+)` and `2xy+3yz+4xz=18`. If `alpha`, `beta` and `gamma` be the values of `x`, `y` and `z` respectively, for which `xyz` attains its
Let `x,y,z in R^(+)` and `2xy+3yz+4xz=18`. If `alpha`, `beta` and `gamma` be the values of `x`, `y` and `z` respectively, for which `xyz` attains its maximum value, then the value of `2alpha+beta+gamma=`
A. `4`
B. `6`
C. `8`
D. `12`
5 views
1 Answers
Correct Answer - B
`(b)` Using `A.M. ge G.M.`
`(2xy+3yz+4xz)/(3) ge (24x^(2)y^(2)z^(2))^((1)/(3))`
`implies216 ge 24x^(2)y^(2)z^(2)`
`impliesx^(2)y^(2)z^(2) le 9`
`impliesxyz le 3`
So, `xyz` is greatest when `2xy=3yz=4xz=6`
`impliesxy=3`, `yz=2`, `zx=3//2`
`impliesalpha=3//2`, `beta=2`, `gamma=1`
`2alpha+beta+gamma=6`
5 views
Answered