Let `z` be a complex number satisfying `|z+16|=4|z+1|`. Then
Let `z` be a complex number satisfying `|z+16|=4|z+1|`. Then
A. `|z|=4`
B. `|z|=5`
C. `|z|=6`
D. `3 lt |z| lt68`
4 views
1 Answers
Correct Answer - A
`(a)` `|z+16|^(2)=16|z+1|^(2)`
`implies (z+16)(barz+16)=16(z+1)(barz+1)`
`implieszbarz+16z+16barz+256=16zbarz+16z+16barz+16`
`implieszbarz=16implies|z|^(2)=16implies|z|=4`
4 views
Answered