If `sinA=sin^2B and 2cos^2A=3cos^2B` then the triangle ABC is
A. right angled
B. obtuse angled
C. ospsceles
D. equilateral

4 views

1 Answers

Correct Answer - B
`sinA=sin^2Band2cos^2A=3cos^2B`
`rArr2-2sin^2A=3-3sin^2B`
`rArr2sin^2A-3sinA+1=0`
`rArr(2sinA-1)(sinA-1)=0`
`rArrA=30^@rArrA=90^@`
If `A=30^@rArrB=45^@rArrC=105^@`
If `A=90^@rArrB=90^@`, which is not possible

4 views

Related Questions