In `DeltaABC`, if AB = c is fixed, and `cos A + cosB + 2 cos C = 2` then the locus of vertex C is
In `DeltaABC`, if AB = c is fixed, and `cos A + cosB + 2 cos C = 2` then the locus of vertex C is
A. ellipse
B. hyperbola
C. circle
D. parabola
4 views
1 Answers
Correct Answer - A
`cos A + cos B = 2(1 - cos C) = 4 sin^(2).(C)/(2)`
`rArr 2cos.(A +B)/(2) cos.(A -B)/(2) = 4 sin^(2).(C)/(2)`
`rArr cos.(A -B)/(2) = 2 sin.(C)/(2)`
`rArr 2 cos.(C)/(2) cos.(A -B)/(2) = 4 sin.(C)/(2) cos.(C)/(2)`
`rArr 2 sin.(A + B)/(2) cos.(A -B)/(2) = 2 sin C`
`rArr sin A+ sin B = 2 sin C`
`rArr a + b = 2c`(constant)
So, locus of vertex C is an ellipse with vertices A and B as foci
4 views
Answered