Let `vecV=2hati+hatj-hatk` and `vecW=hati+3hatk`. It `vecU` is a unit vector, then the maximum value of the scalar triple product `[(vecU, vecV, vecW)
Let `vecV=2hati+hatj-hatk` and `vecW=hati+3hatk`. It `vecU` is a unit vector, then the maximum value of the scalar triple product `[(vecU, vecV, vecW)]` is
A. `-1`
B. `sqrt10 + sqrt6`
C. `sqrt59`
D. `sqrt60`
4 views
1 Answers
Correct Answer - c
Given that `vecV = 2hati +hatj -hatk and vecW =hati + 3hatk and vecU` is a unit vector
` |vecU|=1`
Now `|vecU vecV vecW] = vecU.(vecV xx vecW)`
`= vecU . (2hati +hatj -hatk) xx ( hati + 3hatk)`
`vecU . (3hati -7hatj - hatk)`
` sqrt(3^(2)+7^(2)+ 1^(2)) cos theta`
Which is maximum when `cos theta =1`
therefore, maximum value of [`vecU vecV vecW] - sqrt59`
4 views
Answered