if `hata, hatb and hatc` are unit vectors. Then `|hata - hatb|^(2) + |hatb - hatc|^(2) + | vecc -veca|^(2)|` does not exceed
A. 4
B. 9
C. 8
D. 6

4 views

1 Answers

Correct Answer - b
`hata, hatb and hatc ` are unit vectors, now,
` x= |hata - hatb|^(2) = |hatb - hatc|^(2) + |hatc - hata|^(2)`
` = 1/2 ( hata . Hata + hatb.hatb + hatc. Hatc) - 2hata.hatb - 2hata.hatb- 2hatb.hatc - 2hatc.hata`
`= 6-2 ( hata .hatb + hatb. hatc + hatc.hata)`
Also , `|hata + hatb + hatc| ge 0`
` or hata. hata + hatb. hatb + hatc.hatc + 2 ( hat. hatb + hatb . hatc +hatc hatc) ge 0 `
`or 3+2 ( hata.hatb + hatb. hatc + hatc .hata) ge 0 `
` or 2 ( hata. hatb + hatb. hatc + hatc .hata) ge -3`
`or -2 ( hata. hatb + hatb. hatc +hatc.hata) le 3`
` or 6-2 (hata.hatn + hatb. hatc + hatc.hata) le 9 `
From (i) and (ii) ` x le 9`
therefore, x does not exced 9.

4 views

Related Questions