`d/(dx)sqrt((1-sin2x)/(1+sin2x))i se q u a lto,(0<x<pi/2),` `sec^2x` (b) `-sec^2(pi/4-x)` `sec^2(pi/4+x)` (d) `sec^2(pi/4-x)`
`d/(dx)sqrt((1-sin2x)/(1+sin2x))i se q u a lto,(0A. `sec^(2)x`
B. `-sec^(2)((pi)/(4)-x)`
C. `sec^(2)((pi)/(4)+x)`
D. `sec^(2)((pi)/(4)-x)`
5 views
1 Answers
`y=sqrt((1-sin 2x)/(1+ sin 2x))=(cos x - sin x)/(cos x + sin x)=(1-tan x)/(1+ tan x)=tan ((pi)/(4)-x)`
`therefore (dy)/(dx)=-sec^(2)((pi)/(4)-x)`
5 views
Answered