If `x` is positive, the first negative term in the expansion of `(1+x)^(27//5)i s(|x|<1)` `5t ht e r m` b. `8t ht e r m` c. `6t ht e r m` d. `7t ht e
If `x`
is positive, the first negative term in the expansion of `(1+x)^(27//5)i s(|x|<1)`
`5t ht e r m`
b. `8t ht e r m`
c. `6t ht e r m`
d. `7t ht e r m`
A. `5^(th)` term
B. `8^(th)` term
C. `6^(th)` term
D. `7^(th)` term
4 views
1 Answers
Correct Answer - B
`T_(r+1)` in `(1+x)^(n)` is
`(n(n-1)(n-2)"……"(n-r+1))/(r!) x^(r)`
For first negative term,
`n -r + 1 lt 0`
or `27/5 - r +1 lt 0` or `r gt 32/5`
Thus, first negative term occurs when `r = 7`,
4 views
Answered