Assuming `x` to be so small that `x^2` and higher power of `x` can be neglected, prove that
Assuming `x` to be so small that `x^2` and higher power of `x` can be neglected, prove that
4 views
1 Answers
We have,
`((1+3/4x)^(-4)(16-3x)^(1//2))/((8+x)^(2//3))=((1+3/4x)^(-4)(16)^(1//2)(1-(3x)/(16))^(1//2))/(8^(2//3)(1+x/8)^(2//3))`
`= (1+3/4x)^(-4) (1-(3x)/(16))^(1//2) (1+(x)/(8))^(-2//3)`
`{1+(-4) (3/4x)}{1+1/2 ((-3x)/(16))}{1+(-2/3)(x/8)}`
`= (1-3x)(1-3/32x)(1-x/12)`
`= (1-3x-3/(32)x)(1-x/12)` [neglecting `x^(2)`]
`= (1-99/32x)(1-x/12)=1-(99)/(32)x-(x)/(12)` [neglecting `x^(2)`]
`1 - (305)/(96) x`
4 views
Answered