If the points `A(0,0),B(cosalpha,sinalpha)`, and `C(cosbeta,sinbeta)` are the vertices of a right- angled triangle, then
A. `sin.(alpha-beta)/(2)=(1)/(sqrt2)`
B. `cos.(alpha-beta)/(2)=(1)/(sqrt2)`
C. `cos.(alpha-beta)/(2)=-(1)/(sqrt2)`
D. `sin.(alpha-beta)/(2)=-(1)/(sqrt2)`

4 views

1 Answers

Correct Answer - A::C::D
Since `AB=AC=1`, the triangle is right -angled at point A. we have `tanalphatanbeta=-1` or `cos(alpha-beta)=0or alpha-beta=+-(pi)/(2)`

4 views