If `f(x)=x^(11)+x^9-x^7+x^3+1` and `f(sin^(-1)(sin8)=alpha,alpha` is constant, then `f(tan^(-1)(t a n8)` is equal to `alpha` (b) `alpha-2` (c) `alpha+
If `f(x)=x^(11)+x^9-x^7+x^3+1`
and `f(sin^(-1)(sin8)=alpha,alpha`
is constant, then `f(tan^(-1)(t a n8)`
is equal to
`alpha`
(b) `alpha-2`
(c) `alpha+2`
(d) `2-alpha`
A. `alpha`
B. `alpha -2`
C. `alpha + 2`
D. `2 - alpha`
5 views
1 Answers
Correct Answer - D
`f(x) + f(-x) = 2`
Now `(sin^(-1) (sin 8)) = 3pi - 8 = y`
And `(tan^(-1) (tan 8)) = (8 - 3pi) = -y`
Hence, `f(y) + f(-y) = 2`
Given `f(y) = alpha`, we have `f(-y) = 2 - alpha`
5 views
Answered