If `Aa n dB` are square matrices of the same order and `A` is non-singular, then for a positive integer `n ,(A^(-1)B A)^n` is equal to `A^(-n)B^n A^n`
If `Aa n dB`
are square matrices of the same order and `A`
is non-singular, then for a positive integer `n ,(A^(-1)B A)^n`
is equal to
`A^(-n)B^n A^n`
b. `A^n B^n A^(-n)`
c. `A^(-1)B^n A^`
d. `n(A^(-1)B^A)^`
A. `A^(-n)B^(n)A^(n)`
B. `A^(n)B^(n)A^(-n)`
C. `A^(-1) B^(n)A`
D. `n(A^(-1) BA)`
5 views
1 Answers
Correct Answer - C
`(A^(-1) BA)^(2)=(A^(-1) BA) (A^(-1) BA)`
`=A^(-1) B(A A^(-1))BA`
`=A^(-1)BIBA=A^(-1) B^(2)A`
`(A^(-1) BA)^(3)=(A^(-1) B^(2)A) (A^(-1) BA)`
`=A^(-1) B^(2) (A A^(-1)) BA`
`=A^(-1) B^(3) A` and so on
`:. (A^(-1) BA)^(n)=A^(-1) B^(n)A`
5 views
Answered