If `[alphabetagamma-alpha]` is to be square root of two-rowed unit matrix, then `alpha,betaa n dgamma` should satisfy the relation. `1-alpha^2+betagamma=0` b. `alpha^2+betagamma=0` c. `1+alpha^2+betagamma=0` d. `1-alpha^2-betagamma=0`
A. `1-alpha^(2)+beta gamma=0`
B. `alpha^(2)+beta gamma-1=0`
C. `1+alpha^(2)+beta gamma=0`
D. `1-alpha^(2)-beta gamma=0`

10 views

1 Answers

Correct Answer - B
We have
`[(alpha,beta),(gamma,-alpha)][(alpha,beta),(gamma,-alpha)]=[(1,0),(0,1)]`
or `[(alpha^(2)+beta gamma,0),(0,alpha^(2)+beta gamma)]=[(1,0),(0,1)]`
or `alpha^(2)+beta gamma-1=0`

10 views

Related Questions