Find non-zero values of `x` satisfying the matrix equation: `x[2x2 3x]+2[8 5x4 4x]=2[x^2+8 24 10 6x]`
Find non-zero values of `x` satisfying the matrix equation: `x[2x2 3x]+2[8 5x4 4x]=2[x^2+8 24 10 6x]`
5 views
1 Answers
Given that
`x[(2x, 2),(3,x)]+2[(8, 5x),(4,4x)]=2 [(x^(2)+8,24),(10, 6x)]`
`implies [(2x^(2), 2x),(3x,x^(2))]+[(16,10x),(8,8x)]=[(2x^(2)+16, 48),(20,12x)]`
`implies [(2x^(2)+16, 2x+10x),(3x+8, x^(2)+8x)]=[(2x^(2)+16,48),(20,12x)]`
Comparing the elements, we get
`2x+10x=48`
`implies 12x=48`
`implies x=4`
This value of x also satisfies the equations
`3x+8=20` and `x^(2)+8x=12x`
5 views
Answered