The velocity of particle is `3hat(i) +2hat(j)+3hat(k)`. Find the vector component of the velocity along the line `hat(i) -hat(j)+hat(k)`.
The velocity of particle is `3hat(i) +2hat(j)+3hat(k)`. Find the vector component of the velocity along the line `hat(i) -hat(j)+hat(k)`.
A. `(4)/(3)(hat(i)-hat(j)+hat(k))`
B. `(2)/(3)(hat(i)+hat(j)+hat(k))`
C. `(2)/(3)(3hat(i)+2hat(j)+3hat(k))`
D. None
1 Answers
Correct Answer - A
Here `vec(v)=3hat(i)+2hat(j)+3hat(k)`. Let `theta` be the angle between the line and the velocity of the particle. Then
`costheta=(3-2+3)/(sqrt(22)sqrt(3))=(4)/(sqrt(66))`
`therefore` Component of velocity along this line `=|vec(v)|costheta`
`=sqrt(22)4(4)/(sqrt(66))=(4)/(sqrt(3))`
Vector component `=(4)/(sqrt(3))vec(u)` is the unit vector along the line.
But `vec(u)=(hat(i)-hat(j)+hat(k))/(sqrt(3))`
`therefore` Vector component `=(4)/(3)(hat(i)-hat(j)+hat(k))`