`int_(sin theta)^(cos theta) f(x tan theta)dx` (where `theta!=(npi)/2,n epsilonI`) is equal to
A. `-cos theta int_(1)^(tan theta) f(x sin theta )dx`
B. `-tan theta int_(cos theta)^(sin theta) f(x)dx`
C. `sin theta int_(1)^(tan theta)f (x cos theta)dx`
D. `1/(tan theta) int_(sin theta)^(sin theta tan theta) f(x)dx`

7 views

1 Answers

Correct Answer - A
Putting `x tan theta =z sin theta` or `dx=cos theta dz`. We get
`I=cos theta int_(tan theta)^(1) f(z sin theta)dz`
`=-cos theta int_(1)^(tan theta)f(x sin theta) dx`

7 views

Related Questions