The value of the integral `int_0^1e^x^2dx` lies in the interval `(0,1)` (b) `(-1,0)` `(1, e)` (d) none of these
The value of the integral `int_0^1e^x^2dx`
lies in the interval
`(0,1)`
(b) `(-1,0)`
`(1, e)`
(d) none of these
A. `(0,1)`
B. `(-1,0)`
C. `(1,e)`
D. none of these
4 views
1 Answers
Correct Answer - C
Since `e^(x^(2))` is an increasing function on `(0,1)`.
`m=e^(0)=1,M=e^(1)=e` [`m` and `M` are minimum and maximum values of `f(x)=e^(x^(2))` in the interval `(0,1)` respectively]. Then
`1lt e^(x^(2)) lt e`, for all `x epsilon(0,1)`
or `1(1-0)lt int_(0)^(1) e^(x^(2))dx lt e(1-0)`
or `1 lt int_(0)^(1)e^(x^(2)) dx lt e`
4 views
Answered