If `f(x)` is differentiable and `int_0^(t^2)xf(x)dx=2/5t^5,` then `f(4/(25))` equals `2/5` (b) `-5/2` `1` (d) `5/2`
If `f(x)`
is differentiable and `int_0^(t^2)xf(x)dx=2/5t^5,`
then `f(4/(25))`
equals
`2/5`
(b) `-5/2`
`1`
(d) `5/2`
A. `2//5`
B. `-5//2`
C. `1`
D. `5//2`
4 views
1 Answers
Correct Answer - A
`int_(0)^(t^(2)) xf(x)dx=2/5t^(5)` (Here `t gt0`)
Differentiating bothsides w.r.t `t` we get
`t^(2)f(t^(2))xx2t=2/5xx5t^(4)`
or `f(t^(2))=t`
Put `t=2/5`. Then `f(4/25)=2/5`
4 views
Answered