For `x epsilonR`, and a continuous function `f` let `I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx` and `I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx`
For `x epsilonR`, and a continuous function `f` let `I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx` and `I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx`.
Then `(I_(1))/(I_(2))` is
A. `-1`
B. `1`
C. `2`
D. `3`
5 views
1 Answers
Correct Answer - B
`I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf(x(2-x))dx`
`=int_(sin^(2)t)^(1+cos^(2)t)(2-x)f(x(2-x))dx=2I_(2)-I_(1)`
or `2I_(1)=2I_(2)` or `(I_(1))/(I_(2))=1`
5 views
Answered