Evaluate: `int_0^x[cost]dtw h e r en in (2npi,(4n+1pi/2),n in N ,a n d[dot]` denotes the greatest integer function.

5 views

1 Answers

Let
`I=int_(0)^(x)[cos t] dt`
`=int_(0)^(2npi)[cost]dt+int_(2pi)^(x)[cost]dt`
`=nint_(0)^(2pi)[cost]dt+int_(2npi)^(x)[cost]dt`
`=-npi+int_(2npi)^(x)0 dt`
`=-npi`

5 views