If `f(x)={{:(x-1", "xge1),(2x^(2)-2", "xlt1):},g(x)={{:(x+1", "xgt0),(-x^(2)+1", "xle0):}," and "` `h(x)=|x|," then "lim_(xto0) f(g(h(x)))" is"`______
If `f(x)={{:(x-1", "xge1),(2x^(2)-2", "xlt1):},g(x)={{:(x+1", "xgt0),(-x^(2)+1", "xle0):}," and "`
`h(x)=|x|," then "lim_(xto0) f(g(h(x)))" is"`_______.
4 views
1 Answers
Correct Answer - `(0)`
`underset(xto0^(+))limf(g(h(x)))=f(g(0^(+)))=f(1^(+))=0`
`underset(xto0^(-))limf(g(h(x)))=f(g(0^(+)))=f(1^(+))=0`
Hence, `underset(xto0)limf(g(h(x)))=0`
4 views
Answered