`lim_(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx))` is equal to
`lim_(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx))` is equal to
A. sec `x(xtanx+1)`
B. `xtanx+secx`
C. `xsecx+tanx`
D. none of these
7 views
1 Answers
Correct Answer - D
The ginve limit is
`underset(xtooo)lim((2)/(x)+2+(sin2x)/(x))/((2+(sin2x)/(x))e^(sinx))`
`=(0+2+0)/((2+0)xx("a valule between "1/e" and "e))`
`[becauseunderset(xtooo)limsinx in(-1,1)]`
Hence, limit does not exist.
7 views
Answered