`lim_(xto-1) (1)/(sqrt(|x|-{-x}))` (where `{x}` denotes the fractional part of x) is equal to
A. 16
B. 24
C. 32
D. 8

5 views

1 Answers

Correct Answer - A
L.H.L.`=underset(xto-1^(-))lim(1)/(sqrt(|x|-{-x}))=underset(xto-1^(-))lim(1)/(sqrt(-x-(x+2)))`
`=underset(xto-1^(-))lim(1)/(sqrt(-2x-2))=oo`
R.H.L.`=underset(xto-1^(+))lim(1)/(sqrt(|x|-{-x}))=underset(xto-1^(-))lim(1)/(sqrt(-x-(x+1)))`
`=underset(xto-1^(-))lim(1)/(sqrt(-2x-1))=1`
Hence, the limit does not exist.

5 views