If ` log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6)` in terms of a and b is equal to
If ` log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6)` in terms of a and b is equal to
A. `(2a+3b-1)/(5a+b-2)`
B. `(5a+b-1)/(3a+2b-2)`
C. `(3a+b-2)/(2a+3b-1)`
D. `(2a+5b-2)/(3a+b-1)`
5 views
1 Answers
Correct Answer - B
`log_(0.72)(9.6)= log_(72/100)(96/10) =((log_(10) 96-log_(10) 10))/((log_(10) 72 - log_(10)100))`
`=(log_(10)(2^(5)xx3)-1)/(log_(10)(2^(3)xx3^(2))-2)`
`=(5a+b-1)/(3a+2b-2)`
5 views
Answered