The rate law for the decompoistion of gaseous `N_(2)O_(5)`, `N_(2)O_(5)(g) rarr 2NO_(2)(g) + (1)/(2)O_(2)(g)` is observed to be: `r = (-d[N_(2)O_(5)])
The rate law for the decompoistion of gaseous `N_(2)O_(5)`,
`N_(2)O_(5)(g) rarr 2NO_(2)(g) + (1)/(2)O_(2)(g)` is observed to be:
`r = (-d[N_(2)O_(5)])/(dt) = k[N_(2)O_(5)]`
A reaction machanism which has been suggested to be conisstent with this rate law is
`N_(2)O_(5)(g) overset(k_(eq))hArr NO_(2)(g)+NO_(3)(g) ("fast equilibrium")`
`NO_(2) (g) + NO_(3)(g) overset(k_(1))rarr NO_(2)(g) + NO(g) + O_(2)(g)` (slow)
`NO(g) + NO_(3)(g) overset(k_(2))rarr 2NO_(2)(g)` (fast)`
Show that the mechanism is consistent with the above rate law.
1 Answers
`r=k_(1)[NO_(2)][NO_(3)]`
`k=([NO_(2)][NO_(3)])/([N_(2)O_(5)])or [NO_(3)]=(k[N_(2)O_(5)])/([NO_(2)])`
`r=k_(1)K[N_(2)O_(5)]=k[N_(2)O_(5)]`