Find the value of k for which of (7, -2), (5, 1), (3, k) are collinear

A) -4

B) 4

C) -5

D) 5

4 views

1 Answers

Correct option is (B) 4

Given that points (7, -2), (5, 1), (3, k) are collinear.

\(\therefore\) Area of formed triangle is zero.

\(\therefore\frac12|7(1-k)+5(k-(-2))+3(-2-1)|=0\)

\(\Rightarrow|7-7k+5k+10-9|=0\)

\(\Rightarrow|-2k+8|=0\)

\(\Rightarrow-2k+8=0\)

\(\Rightarrow2k=8\)

\(\Rightarrow k=\frac82=4\)

4 views