Construct `a_(2xx2)` matrix, where (i) `a_(ij)=((i-2j)^(2))/(2)` (ii) `a_(ij)=|-2hati+3j|`
Construct `a_(2xx2)` matrix, where
(i) `a_(ij)=((i-2j)^(2))/(2)` (ii) `a_(ij)=|-2hati+3j|`
5 views
1 Answers
We know that the notation namely `A=[a_(ij)]_(mxxn)` indicates that A is a matrix of order `mxxn`. Also ` 1leilem,1lejlen,i,j epsilon N`.
`rArr A=( (i-2j)^(2))/(2),1leile2,1lejle2`
`a_(11)=((1-2) ^(2))/(2)=(1)/(2)`
`therefore a_(11)=((1-2)^(2))/(2)=(9)/(2)`
` a_(21)=((2-2xx1)^(2))/(2)=0`
`a_(22)=((2-2xx2)^(2))/(2)=2`
Thus, `A=[{:((1)/(2),(9)/(2)),(0,2):}]_(2xx2)`
(ii) Here `A= [ a_(ij)]_(2xx2)=|-2i+3ij|,1leile2,1lejle2`
`a_(11)=|-2xx1+3xx1|=1`
`a_(12)=|-2xx1+3xx2 |=4`
`a_(21)=|- 2xx2+3xx1|=1`
`a_(22)=|-2xx2+3xx2|=2`
`A=[{:(1,4),(1,2):}]_(2xx2)`
5 views
Answered