The general solution of a differential equation of the type `(dx)/(dy)+P_1x=Q_1` is (A) `y e^(intP_1dy)=int(Q_1e^(intP_1dy))dy+C` (B) `ydote^(intP_1dx
The
general solution of a differential equation of the type `(dx)/(dy)+P_1x=Q_1`
is
(A)
`y e^(intP_1dy)=int(Q_1e^(intP_1dy))dy+C`
(B) `ydote^(intP_1dx)=int(Q_1e^(intP_1dx))dx+C`
(C)
`x e^(intP_1dy)=int(Q_1e^(intP_1dy))dy+C`
(D) `x e^(intP_1dx)
A. `y*e^(intP_(1)dy)=int(Q_(1)e^(intP_(1)dy))dy+C`
B. `y*e^(intP_(1)dx)=int(Q_(1)e^(intP_(1)dx))dx+C`
C. `x*e^(intP_(1)dy)=int(Q_(1)e^(intP_(1)dy))dy+C`
D. `x*e^(intP_(1)dx)=int(Q_(1)e^(intP_(1)dx))dx+C`
4 views
1 Answers
The intergrating factor of the given differential equation `(dx)/(dy)+P_(1)x=Q_(1)` is `e^(intP_(1)dy)`
Thus, the general solution is : `x*I.E.=int(QxxI.E.)dy+c`
`:. Xe^(intP_(1)dy)=int(q_(1)e^(intP_(1)dy))dy+c`
4 views
Answered