In an A.P. if common difference is 2, sum of n terms is 49,7th term is 13, then n = ……………… 

A) 7 

B) 0 

C) 13 

D) 5

4 views

2 Answers

Correct option is (A) 7

Given that common difference is d = 2

Sum of n terms is \(S_n=49\)

\(7^{th}\) term is \(a_7=13\)

\(\Rightarrow a+6d=13\)         \((\because a_7=a+(7-1)d=a+6d)\)

\(\Rightarrow a+12=13\)         \((\because d=2)\)

\(\Rightarrow a=13-12=1\)

Now, \(S_n=49\)

\(\Rightarrow\frac n2[2a+(n-1)d]=49\)

\(\Rightarrow\frac n2[2\times1+(n-1)2]=49\)

\(\Rightarrow n[2+2n-2]=49\times2\)

\(\Rightarrow2n^2=49\times2\)

\(\Rightarrow n^2=49\)

\(\Rightarrow n=7\)

4 views

Correct option is A) 7

4 views