Which term of G.P. 3, 3√3,9, …………….. equals to 243? 

A) 6 

B) 7 

C) 8 

D) 9

6 views

2 Answers

Correct option is (D) 9

Given G.P. is \(3, 3 \sqrt3,9,.......\)

\(\therefore a_1=3,a_2=3\sqrt3\)

\(\therefore\) Common ratio is r \(=\frac{a_2}{a_1}\)

\(=\frac{3\sqrt3}3=\sqrt3\)

Let \(a_n=243\)

\(\therefore ar^{n-1}=243\)       \((\because a_n=ar^{n-1})\)

\(\Rightarrow3(\sqrt3)^{n-1}=243\)

\(\Rightarrow3\frac{n-1}2=\frac{243}3\)

\(=81=3^4\)

\(\Rightarrow\frac{n-1}2=4\)

\(\Rightarrow n-1=8\)

\(\Rightarrow n=8+1=9\)

Hence, \(9^{th}\) term of given G.P. equals to 243.

6 views

Correct option is D) 9

6 views