For what values of a and b will be equations 2x + 3y = 7, (a – b) x + (a + b)y = (3a + b – 2) represent coincident lines ?
For what values of a and b will be equations 2x + 3y = 7, (a – b) x + (a + b)y = (3a + b – 2) represent coincident lines ?
A) a = -5, b = 1
B) a = 5, b = 1
C) a = -5, b = -1
D) a = 5, b = -1
2 Answers
Correct option is (B) a = 5, b = 1
Conditions for coincident lines is
\(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\)
\(\Rightarrow\) \(\frac{2}{a-b}=\frac{3}{a+b}=\frac{-7}{-(3a+b-2)}\)
\(\Rightarrow\) \(\frac{2}{a-b}=\frac{3}{a+b}\) and \(\frac2{a-b}=\frac{7}{(3a+b-2)}\)
\(\Rightarrow\) 2 (a+b) = 3 (a - b)
and 2 (3a + b - 2) = 7 (a - b)
\(\Rightarrow\) 2a + 2b = 3a - 3b
\(\Rightarrow\) 2a - 3a = -3b - 2b
\(\Rightarrow\) -a = -5b
\(\Rightarrow\) a = 5b ____________(1)
and 2 (3a + b - 2) = 7 (a - b)
\(\Rightarrow\) 6a + 2b - 4 = 7a - 7b
\(\Rightarrow\) 6a - 7a + 2b + 7b - 4 = 0
\(\Rightarrow\) -a + 9b - 4 = 0
\(\Rightarrow\) -5b + 9b - 4 = 0 (From (1))
\(\Rightarrow\) 4b - 4 = 0
\(\Rightarrow\) b = \(\frac44\) = 1
\(\therefore a=5\times1=5\) (From (1))
Hence, a = 5 & b = 1