The larger of two supplementary angles exceeds the smaller by 18°. The angles are ……………….. 

A) 80°, 100° 

B) 81°, 99° 

C) 82°, 98° 

D) 83°, 97°

4 views

2 Answers

Correct option is (B) 81°, 99°

Let x & y are two supplementary angles.

\(\therefore\) x+y \(=180^\circ\)      ________(1)

Let x be the larger angle.

\(\therefore\) x = y + \(18^\circ\)   (From the given condition)

\(\Rightarrow\) x - y = \(18^\circ\)    ________(2)

By adding equations (1) & (2), we obtain

(x+y) + (x - y) \(=180^\circ+18^\circ\)

\(\Rightarrow\) 2x \(=198^\circ\)

\(\Rightarrow\) x \(=\frac{198^\circ}2=99^\circ\)

\(\therefore\) y \(=180^\circ-x\)

\(=180^\circ-99^\circ\) \(=81^\circ\)

Hence, the angles are \(81^\circ\;and\;99^\circ.\)

4 views

Correct option is B) 81°, 99°

4 views

Related Questions