The sum of \((\frac{x-1}{x+1})\) and its reciprocal is ………………

A) \(\frac{x^2+1}{x^2-1}\)

B) \(\frac{2(x^2+1)}{x^2-1}\)

C) \(\frac{x^2-1}{x^2+1}\)

D) \(\frac{2(x^2-1)}{x^2+1}\)

4 views

2 Answers

Correct option is (B) \(\frac{2(x^2+1)}{x^2-1}\)

Sum of \(\left(\frac{x-1}{x+1}\right)\) and its reciprocal \(=\frac{x-1}{x+1}+\frac{x+1}{x-1}\)

\(=\frac{(x-1)^2+(x+1)^2}{(x+1)(x-1)}\) \(=\frac{(x^2-2x+1)+(x^2+2x+1)}{x^2-1}\)

\(=\frac{2(x^2+1)}{x^2-1}\)

4 views

Correct option is  B) \(\frac{2(x^2+1)}{x^2-1}\)

4 views