If Tan θ + Cot θ = 5, then the value of Tan2 θ + Cot2 θ =

A) 25 

B) 23 

C) 27 

D) 15

4 views

2 Answers

Correct option is: B) 23

Given that tan \(\theta\) + Cot \(\theta\) = 5

\((tan \, \theta + cot \, \theta)^2 = 5^2 = 25\)

\(tan^2\theta + cot^2\theta + 2\, tan \, \theta. cot\, \theta =25 \) (\(\because\) \((a+b)^2 = a^2 + b^2 + 2ab\))

\(tan^2\theta + cot^2\theta + 2 =25 \)\(\because\) cot \(\theta\) = \(\frac 1{tan\, \theta}\) = tan \(\theta\) - cot \(\theta\) = 1)

\(tan^2\theta + cot^2\theta =25 -2 = 23\)

4 views

Correct option is: B) 23

4 views