In a right circular cone, \(\sqrt{(l+r)(l-r)}\) =

(A) slant height 

(B) vertical height 

(C) radius of the base 

(D) diameter of the base

4 views

2 Answers

Correct option is: (B) vertical height

In right circular cone, we have 

r = Radius of base of the cone, 

h = Vertical height of the cone

l = slant height of the cone

Now, \(\sqrt{(l + r)(l - r)}\) = \(\sqrt {l^2-r^2}\) (\(\because\) (a+b) (a-b) = \(a^2-b^2\))

\(\sqrt {h^2}\) (\(\because\) \(l^2 = r^2 + h^2 = l^2 -r^2 = h^2\))

= h which is vertical height of the right circular cone.

4 views

Correct option is: (B) vertical height

4 views